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S P E C I F I C A T I O N S

Size 14HP

Depth 25mm

Power Consumption +12V 72mA

−12V 72mA

Timing Range 50s–7ms (low), 7Hz–50kHz (high)

Tuning Accuracy 5 octaves

Self-Oscillation Range −6V–+6V peak

Full I/O Range −9.5V–+9.5V peak

Input Impedance 50kΩ

Output Impedance 150Ω

Output Drive 2kΩ (min), 20kΩ+ (ideal)

I N S T A L L A T I O N

Before installing the module, make sure the power is off. Attach the power
cable to the module and

to the bus. Double check the alignment of the red
stripe (or the brown wire for a multicolor cable)

with the markings on the
module and the bus. The red stripe should correspond with −12V, as is

standard in Eurorack. Check the documentation of your bus and power solution
if you are unsure.

Screw the module to the rails of the case using the
provided screws. (M2.5 and M3 size screws are

provided.)

New Systems Instruments modules all have keyed headers and properly
wired cables. But please

remember to double check the other side of the cable
 for proper installation with the bus. Addi-

tionally, if using a different power
cable, note that not every company wires modular power cables

such that the
red stripe will align properly with a keyed header. While our modules are
reverse po-

larity protected as much as is practical, it is still possible that
you could damage the module, your

power supply, or another module by
installing the power cable improperly.

Lastly, please fully screw down the module before powering on your case.
The electronics are po-

tentially sensitive to shorts, and if the module is not
properly attached to a case, there is a risk of

contact with conductive or
flammable matter.
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O V E R V I E W

Inertia produces a rate limited output signal from an input signal. In
musical applications this is

commonly known as slew limiting.
However, unlike most slew limiters, Inertia can give the output

signal
momentum, a tendency to continue in the current rate and direction of 
motion. Momentum is

ubiquitous in physical systems. It lets the finch briefly
 fold back its wings while bobbing upward,

lets the waves on the beach slide up
the shore, and keeps the planets moving around the sun.

Inertia allows you to control rising and falling rates and momenta
separately, so the output can rise

slower or faster than it falls, and it can
have a strong tendency to continue moving in one direction,

but a weak
tendency (or no tendency at all) in the other direction.

While these controls are simple and intuitive, Inertia is extremely
versatile. Inertia can be set up as

an envelope generator, as an oscillator,
as a resonant filter, as a frequency divider, as an LFO, etc.

H O W  T O  R E A D  T H I S  M A N U A L

This manual is intended to be an in depth resource for continuing
 exploration as you continue

your journey through sound and synthesis. While
 Inertia’s controls are simple, this manual pro-

vides a deep analysis of how
those controls perform in a wide variety of contexts and applications.

It is
not at all required for you to read the whole manual before using the module.
Read according

to your own learning style. I recommend reading over the
Overview and Interface section, then

going through Quick Start and trying out
some patches. From there, browse through the rest of the

sections and read
what interests you. The sections on the Core of Inertia at the beginning of 
the

manual will give you an in-depth understanding of how Inertia behaves in
general, but they don’t

address particular applications. The sections
following that are all devoted to various applications,

and can be read when
you need more information than is provided by the Quick Start section. If

you
already understand a lot of the underlying theory, you can look through the
Model and Para-

meters sections at the end and find the equations that govern
the module’s behavior, but these sec-

tions assume a lot of prior
knowledge.

A note on the mathematics: many sections of this manual contain
mathematical equations. These

equations aid understanding, but where possible
the text was written in such a way that you should

be able to skip past them
and still understand the basics. So read through with confidence, even if

you
don’t understand the math yet. There are a few sections specifically focused
on mathematics

where that is not the case, but you can safely skip over these
sections, too.

I do recommend you make an effort to learn and understand the mathematics
of synthesis. Just like

music theory is the language of music, mathematics is
the language of synthesis. You can be an ex-

cellent musician without knowing
any music theory, and an excellent synthesist without knowing

any mathematics.
But it’s very difficult to speak precisely about music without music theory,
and it’s

very difficult to speak precisely about synthesis without
mathematics. Think of it as a tool to help

you learn from others and teach
them in turn.
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NEW SYSTEMS INSTRUMENTS

I N T E R F A C E

1. Rise/Fall Indicator – Signals that
the module

is in rise/fall mode, and the left/orange text in-

dicates the
function of the controls.

2. Inerface Switch – Switches the module be-

tween rise/fall mode and
 skew mode. In

rise/fall mode, you control rise and fall inde-

pendently. In skew
mode, you control the value

of rise + fall with one knob, and the skew be-

tween
them with the other knob.

3. Skew Indicator – Signals that the module is

in skew mode, and the
right/blue text indicates

the function of the controls.

4. Range Switch – Switches between L (low, CV)

and
H (high, audio) range.

5. Input – Unless the trigger is active, output

follows the input value
 according to rate and

momentum.

6. Trigger Input – When the trigger input sees a

rising edge, Inertia
behaves as if the input value

were at 5V, until the output value goes past 5V.
Note that the output will only exceed 5V if there is some rise

momentum.

7. Volt per Octave Input – Adjusts the rate up or down one octave for
each volt of CV.

8. First Order Level – Indicates the value of the first order output,
with brightness proportional to

the positive value.

9. First Order Output – An output with a customary, first order
exponential rate of motion. When

filtering, this output gives a gentle
−6 dB/oct. slope.

10. Second Order Level – Indicates the value of the second order
output, with brightness propor-

tional to the positive value.

11. Second Order Output – This output is a little smoother than the
first order output. When fil-

tering, this output gives a −12 dB/oct.
slope.

12. Rise/Frequency – In rise/fall mode, controls the rate of the
output when it is rising. In skew

mode, controls the total rate (frequency) of 
the output.

13. Rise/Frequency Modulation – In rise/fall mode, CV input to
 control the rate of the output

when it is rising. In skew mode, CV input to
control the total rate (frequency) of the output.

14. Rise/Frequency Attenuverter – Attenuverter for rise/frequency CV
input.

15. Fall/Skew – In rise/fall mode, controls the rate of the output
when it is falling. In skew mode,

controls the skew between the rise and fall
rates, such that the total rate of a rise/fall cycle is pre-

seved. Positive
(right) values shorten the fall time and lengthen the rise time, whereas
negative (left)
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values shorten the rise time and lengthen the fall time. Tuned
such that positive (right) values are

frequency stable enough to be able to
 usefully shape the waveform without overly detuning the

frequency.

16. Fall/Skew Modulation – In rise/fall mode, CV input to control the
rate of the output when it is

falling. In skew mode, CV input to control the
 skew between rise and fall rates. Positive values

shorten the rise time and
lengthen the fall time, whereas negative values shorten the rise time and

lengthen the fall time.

17. Fall/Skew Attenuverter – Attenuverter for fall/skew CV input.

18. Rise/Momentum – In rise/fall mode, controls the amount of 
momentum on a rising output. In

skew mode, controls the total momentum.

19. Rise/Momentum Modulation – In rise/fall mode, CV input to control
the amount of momen-

tum on a rising output. In skew mode, CV input to control
the total momentum.

20. Rise/Momentum Attenuverter – Attenuverter for rise/momentum CV
input.

21. Fall/Skew – In rise/fall mode, controls the amount of momentum on
a falling output. In skew

mode, controls the skew between rise and fall
momenta. A positive (right) value lowers the rise mo-

mentum, while a negative
(left) value lowers the fall momentum.

22. Fall/Skew Modulation – In rise/fall mode, CV input to control the
amount of momentum on a

falling output. In skew mode, CV input to control the
skew between rise and fall momenta. A posi-

tive value lowers the rise momentum,
while a negative value lowers the fall momentum.

23. Fall/Skew Attenuverter – Attenuverter for fall/skew CV.
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Q U I C K  S T A R T

Attack–release envelope: Set Inertia’s INTERFACE to
rise/fall mode (left/orange), set RANGE to

L, turn
FALL momentum all the way down, send a trigger or gate to the
TRIG input, and take the

output from the 1 ORDER
output. RISE rate controls the attack of the envelope and
FALL rate con-

trols the release of the envelope, with right being
faster and left slower. RISE momentum will affect

the level and
shape of the attack. For a less traditional but equally useful envelope, use
the 2 ORDER
output.

Attack–release–sustain–release envelope: Set
Inertia’s INTERFACE to rise/fall mode (left/or-

ange), set
RANGE to L, turn FALL momentum all the way
down, send a gate to the INPUT and take

the output from the
1 ORDER output. RISE rate controls the attack of 
 the envelope and FALL rate

controls the release of the envelope,
with right being faster and left slower. The sustain and release

levels of the
envelope are set by the incoming gate signal. RISE momentum will
cause the attack to

rise above the sustain level, before falling back to this
level at the release rate, thus allowing you to

set different attack and
sustain levels. Use RISE momentum CV for accents. For a less
traditional but

equally useful envelope, use the 2 ORDER
output.

LFO: Set Inertia’s INTERFACE to skew mode (right/blue),
set RANGE to L, turn momentum SKEW
to 12
o’clock, and turn MOMENT. all the way to the right. Take the output
from 1 ORDER. FREQ.
will
 control the frequency of the LFO, and SKEW controls whether it’s
 skewed left or right.

2 ORDER gives a second LFO, delayed
45° in phase from the first.

VCO: Set Inertia’s INTERFACE to skew mode (right/blue),
 set RANGE to H, put a pitch CV into

V/O, turn
momentum SKEW to 12 o’clock, and turn MOMENT. all the
way to the right. Take the

output from either 1 ORDER or
2 ORDER. FREQ. will control the frequency of the
VCO, while SKEW
controls the skew. In the center, Inertia produces
a sine wave, while towards the two ends Inertia

produces a harmonically rich
waveform, similar to a sawtooth wave.

Resonant low-pass filter: Set Inertia’s INTERFACE to skew
mode (right/blue), set RANGE to H,

put an audio signal
into INPUT, and take the output from 2 ORDER.
FREQ. will control the frequency

of the filter cutoff, while
MOMENT. controls the resonance of the filter. Rate SKEW
will set a differ-

ent filter cutoff for the rising and falling parts of the
waveform, which will change the waveshape of

the resonance as well as change
 the cutoff frequency in a way that depends on the input wave-

shape. Momentum
SKEW will limit the resonance in a way that depends on the input
waveshape.

With complex input signals, such as the output of the Harmonic
Shift Oscillator, this waveshape-

dependent filtering creates incredibly rich,
evolving outputs.
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An Exponential Approach

T H E  C O R E  O F  I N E R T I A :  E X P O N E N T I A L  M O T I O N

Inertia produces first and second order exponential motion, with
controllable momentum, in re-

sponse to an input signal. These opening sections
 on the Core of Inertia will explain what that

means.

While linear motion moves equal absolute distances in equal times,
exponential motion moves equal

proportional distances in equal times.
To choose which type of motion you want, you have to decide

whether
proportions of distances are important, or whether absolute distances are
important. It’s

also important to know a little about natural phenomena and
how different kinds of signals are

represented in a modular system—for
that see the following section. In the remainder of this sec-

tion, we’ll look
at some important properties of exponential motion.

Exponential motion moves from point  to point , a total dis-

tance
of , in such a way that the amount of time it takes to

move from  to
  is the same as the amount of time it

takes to move from  to , which is the same

amount of time it takes to move
from  to ,

etc. That is, moving over each half 
of the remaining distance

takes the same amount of time as moving over the
 previous

half distance (and the same is true for all other proportions).

Linear motion, on the other hand, would move over a distance

 in such a
way that any ratio of the total distance, say ,

would take the same
amount of time to traverse, regardless of

whether it happens closer to 
or closer to .

Because exponential motion covers equal proportional distances in equal
times, the (linear) rate at

which an exponential signal moves must be
faster when it’s further from its goal, but slower as it

gets closer to its
goal. If we represent the position of the moving object at time  as
 , the rate at

which it’s currently moving as , and the
place it’s moving toward as , then we can express

the relationship
between rate and distance like this:

(If you’re wondering why we chose  instead of , see the section
on Second Order Exponential

Motion below.)

All this equation says is that the rate at which an exponential signal
moves is proportional to the

distance between it and the place it’s trying to
move toward, scaled by some factor . With longer

distances and/or a
bigger  scaling factor, the signal moves faster. With shorter
distances and/or a

smaller  scaling factor, the signal moves
slower.

Because it goes slower in proportion to its closeness, by the time a signal
would reach  it would

have zero motion ( ).
Therefore, strictly speaking, exponential motion will never reach its

goal, and  will never equal . But more loosely,
exponential motion often gets close enough

quickly enough that conventionally
we will say it has “reached” its destination, even if this is not

strictly true.

The philosopher Zeno of Elea, in the 5th century BCE, tried to prove that
our perceptions of mo-

tion are illusory by making an argument about
 proportional motion, but he didn’t consider the

difference between linear and
 exponential motion. Imagine Achilles is in a race with a tortoise,

which has a
head start. In order for Achilles to catch up, he first has to close half the
distance, dur-

ing which time the tortoise moves just a little further, and
Achilles once again has to close half the

distance, but the tortoise has moved
still further, etc. While philosophically there are some more

a b

d

a a + 1/2 d
a + 1/2 d a + 3/4 d

a + 3/4 d a + 7/8 d

d 1/3 d

a b

t y ​(t)1

y ​(t)1
′ x(t)

y
​

(t) =1
′ ω(x(t) − y

​

(t))1

y ​1 y

ω

ω

ω

x(t)
x(t) − y ​(t) =1 0

y ​(t)1 x(t)



7

complex factors
involved (having to do with the nature of infinity and its role in the
relationship be-

tween the continuous and the discrete), generally the
resolution of this paradox comes from under-

standing the nature of 
linear motion, which we assume is how Achilles is moving. In linear
motion,

it is not the proportion of the distance traveled which is
related to time, but the absolute magnitude of

this distance. And so, while
Achilles always has to cover half the distance between him and the tor-

toise,
 as he gets closer to the tortoise these half distance proportions are
 absolutely smaller, and

therefore take less time to cover. That is,
proportionally linear motion speeds up as it approaches its

goal, while
absolutely linear motion remains at a constant speed. With exponential
motion, this pro-

portional speed up doesn’t happen. Each half distance takes
 the same amount of time, and so

Achilles never overtakes the tortoise, no
matter how slowly it moves. Proportionally exponential mo-

tion moves at
a constant rate, while absolutely exponential motion slows down.

This relationship between distance and rate means that exponential signals
and linear signals re-

spond very differently to different magnitudes of 
distance. For example, if we are dealing with a lin-

early moving pitch CV, the
amount of time it takes to move one semitone is always the same, so

moving
over a major third (four semitones) takes 4 times the time it takes to move 1
semitone. In

contrast, if we decide that getting within 1/32 of a semitone is
close enough, then exponential mo-

tion over a major third takes only 7/5 (1.4)
times as much (1/2 semitone + 1/4 + 1/8 + 1/16 +

1/32 vs. 2 semitones + 1 +
1/2 + 1/4 + 1/8 + 1/16 + 1/32). When the distances are larger, lin-

ear motion
means much more time, while exponential motion means only a little more time.
Of

course, if all that matters is the proportional distance–that we get
twice as close, for example–then

no matter what the total distance, this
happens in the same amount of time. But even when the ab-

solute distance is
 what matters, longer distances don’t take much more time with exponential

motion.

Last, we should note that with exponential motion, although the rate is
faster when the signal first

begins to approach the input, and slower as it
gets closer to it, it doesn’t actually matter where the

signal started, only
where it is and where it is going. That is, exponential motion has no
memory. If

we begin at a certain distance, the first half distance takes a
certain amount of time, and the next

half distance takes the same amount of 
time. If we begin instead after we’ve traversed that half dis-

tance, again the
next half distance takes the same amount of time. No matter where or when we

are, exponential motion will cover that half distance in the same time as all
other half distances.

Momentum will change this, adding a tendency to continue
 in the current rate and direction of

motion, which is a sort of memory.

E X P O N E N T I A L  A N D  L I N E A R  S C A L I N G  I N  P E R C E P T I O N ,  P H Y S I C S ,  A N D
S Y N T H E S I S

As explained in the previous section, an exponential signal covers equal
proportions in equal time, while

a linear signal covers equal distance
 in equal time, but when do you care about equal distance and

when equal
proportions? While the previous section gives us abstract considerations to
think about

artistic intent, this section gives some concrete considerations:
 how perception, physical sound

sources, and modular signal levels work with
exponential or linear scales.

Lets begin by examining the perception of two things: pitch and
loudness.

Pitch is very strongly perceived to exist on an exponential scale. That is,
equal proportions between

two frequencies results in the perception of equally
 spaced notes. For example, one frequency at

880Hz and another at 440Hz are in
the ratio 880/440 = 2/1. This is an octave, and this distance

sounds the
same as the distance between 660Hz and 330Hz, even though the absolute
(linear) dis-

tance between the one pair is 440Hz, and the absolute distance
between the other pair is 330Hz.

Loudness, on the other hand, has a relatively weak exponential perception.
Current research seems

to indicate that we perceive loudness as a power curve
 , which is not particularly exponential inp0.3
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its shape. However,
because our hearing is capable of precisely judging the amplitude of a huge

range of signals, it is nevertheless convenient to think of sound pressure
 level on an exponential

scale. Further, the common use of the decibel
exponential scale means that there are strong cultur-

al associations between
exponential differences in loudness and “equal” loudness
differences.

Perception is certainly one factor in the creation of music, but we should
remember that we are not

passive listeners, but actively take in what we’re
hearing, compare it to other natural and construct-

ed sounds we have heard,
 reach conclusions, make judgements about it, experience associations

with the
memory of other events, and have an emotional response. Regardless of how our
percep-

tions work, perceptions are not just images to experience but windows
through which we look at

the physical world.

Physical phenomena of pitch and amplitude are various, and contain both
linear and exponential

scaling. However, the types of phenomena that we
usually look at in a musical context tend to hap-

pen on exponential scales.
Anything which involves both force and momentum, such as the elastici-

ty of a
steel string, will have an amplitude that changes over time at an exponential
rate. Further,

anything that loses energy from fixed events over time, such as
the decay of a reverberant signal in

a room or the hollow body of an
instrument, will have an amplitude that operates on an exponen-

tial scale.
Pitch on the other hand is musically and perceptually exponential, but
physically more

often takes a linear scale. Uniform motion on a string, or the
elongation of a resonant chamber

such as in a trombone, increases pitch
linearly with linear changes in distance. Players will general-

ly compensate
for this. But pitch curves resulting from the stretching of an elastic body,
such as a

guitar string plucked hard or a struck drum head, tend to have this
extra length, and hence change

in pitch, operate exponentially. Changes in
timbre over time generally follow the curves of changes

in amplitude. For
example, in a steel string higher frequencies decay faster than lower
frequencies,

but both decay at an exponential rate.

In a modular system, communicating a signal always involves two moments:
generating the signal

in one module, and interpreting the signal in a second
module. These don’t necessarily have to be

abstractly “matched,”
but if the ways in which signals are both generated and interpreted are
un-

derstood properly, then it becomes possible to exercise artistic intent in
matching and “mismatch-

ing” signals.

While there are other kinds of curves that can be used, in practice almost
every jack interprets its

input either linearly or exponentially. In
particular, pitch and rate controls are most commonly in-

terpreted using a
scale that is already exponential: volt per octave. But some pitch inputs are
linear:

linear FM inputs, the stride input of the Harmonic Shift Oscillator,
and some but not most filter

inputs. Additionally, there are two common types
of VCAs: exponential and linear. A linear VCA

will interpret its signal
without alteration, while an exponential VCA will interpret its signal using a

scale that is already exponential. Two kinds of signals and two kinds of 
 interpretation gives four

possibilites: (1) linear signals into linear
inputs give linear values, (2) exponential signals into linear
inputs give

exponential values, (3) linear signals into exponential
 inputs give exponential values, and (4) exponential

signals into
exponential inputs curve the signal twice, giving “double
exponential” values.

Using linear inputs is straightforward: the curve works without alteration.
Linear signals give linear

curves and exponential signals give exponential
curves.

Exponential inputs are generally used either for a purely musical purpose
(volt per octave) or to try

and give a linear modulation (such as a linear
envelope) an exponential character. There are sever-

al problems with the latter
approach. First, a real exponential signal approaches its target forever,

getting continually closer, but a linear signal has to begin and end somewhere
in a fixed amount of

time. This leads to one of two problems: either the
 exponential curve is much too sharp, or it

doesn’t get close enough to its
goal (VCAs that don’t close). Second, linear signals with exponential

inputs don’t do much to model physical phenomena. In particular, real
exponential upward and



9

downward motion generates curves that are opposites of 
each other, which a linear signal into an

exponential input will not do. Last,
the continuously oscillating form of an exponential curve (as we

will see in
the following sections) is a sine wave, which bears little resemblance to the
shape of a tri-

angle wave fed into an exponential input.

Double exponential signals are not particularly natural, but they can be
musically useful—for ex-

ample, to make different ranges of filter sweeps
happen in relatively similar times, or to set a rela-

tively constant portamento
slide time, regardless of the value of the two pitches.

Filter sweeps are a special case. When modeling the changing timbre of a
decaying signal, arguably

an exponential sweep (an exponential curve into a
linear input) is the correct choice. But in nature

timbre does not generally
change over time in the way the timbre of a filter changes. In the rare

cases
where actual filter sweeps are found in nature—in speech or a brass
instrument with a mute,

for example—the motion of the filter is usually
more or less intentionally controlled, although often

these phenomena are
linear—for example the radius of an open mouth, or the area a mute
leaves

open, is correlated linearly with filter frequency. At this point in
time, filter sweeps are more strong-

ly associated with electronic instruments
than anything else. Historically, almost all envelope gener-

ators have been
exponential. Most filters tend to have exponential frequency inputs, leading
to a

characteristic double exponential filter sweep sound, but a few notable
exceptions have had linear

frequency inputs, giving regular single exponential
filter sweeps. These different envelope shapes

contribute a lot to the sound
of a given filter, and this is often the reason an exact copy of a filter

nevertheless doesn’t “sound right.” Here’s a short
list of the envelope curves of various well-known

filters: Moog, transistor
 ladders, and diode ladders (double exponential); Korg MS series (double

exponential); Oberheim SEM (double exponential); Roland SH-101, Juno 60,
Jupiter 6, etc. (single

exponential); CEM or SSM based, Prophet 5, Oberheim
Matrix, etc. (double exponential); Yama-

ha CS series (single exponential).

T H E  C O R E  O F  I N E R T I A :  S E C O N D  O R D E R  E X P O N E N T I A L  M O T I O N

In Inertia, first order exponential motion follows some target input,
whereas second order expo-

nential motion follows first order exponential
motion, which then follows some input. In this sec-

tion we will look at second
order exponential motion in its relationship to an input and to first or-

der
motion.

First, the relationship between a first order exponential and its input is
the same as the relationship

between first order and second order. So when
first order lags behind its input a certain amount,

second order will lag
behind first order in the same way; while first order exponential motion
limits

the amplitude of higher frequencies at −6 dB/oct. (see the section on
Continuous Response and

Filtering below), second order exponential motion
 limits the amplitude of higher frequencies in

first order motion by −6
dB/oct. Second order exponential motion will therefore lag the input by a

larger phase difference than first order, and it will filter the input at
 −12dB/oct. instead of

−6dB/oct.
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First and second order approaches

We can use the equation for the rate of first order exponential motion from
the Exponential Mo-

tion section to get the relationship between
first and second order motion.

The first equation just reiterates what we have said above: second order
exponential motion follows

first order, and so the rate of second order
motion is proportional to the distance between the first

and second order
outputs. The second equation tells us that we can think about the dependence
of

second on first order motion in terms of rate instead: the rate of second
order motion is propor-

tional to the distance between the input and output, and
inversely proportional to the rate of first

order motion. So while the rate
of second order motion is generally proportional to the distance

between input
and output, as in first order exponential motion, second order exponential
motion

moves a little slower when first order is moving faster, and a little
faster when first order is moving

slower.

Whereas first order exponential motion is completely characterized by the
input and the output (it

has no memory), second order exponential motion is
also dependent on the state of first order mo-

tion, which you can think
about as position (the first equation above), or rate (the second equation).

This extra term is a sort of memory, so if the input is suddenly moved, the
first order output imme-

diately starts moving toward that input at an
exponential rate, but the behavior of the second order

output depends on how
close the first order output was to the input before the input changed. In

particular, if the second order output is in between the first order output
and the input, the two

outputs will be moving in opposite directions until the
second order catches up with the first order

output.
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First order responds immediately; second order continues upward until it

reaches first order

We can also characterize second order exponential motion without reference
to first order, but the

equation is a bit more complicated.

In this equation, the acceleration , or the change
in rate, depends on the distance between output

and input, scaled by , and on the current rate, scaled by . The
dependence of the acceleration

on the current rate is another way of 
characterizing the memory of the system.

In nature, a second order exponential output is often found in driven
systems, that is, in systems

where there is a constant application of force,
such as a bowed string or a woodwind or brass in-

strument—in contrast to
systems where there is a single impulse of force, like a plucked string. Note

however that in musical contexts, often the application of force is
 deliberately controlled by the

performer in order to create the desired
envelope. Second order systems are also found in most

acoustic filters, and
(with momentum) in natural systems where harmonic (periodic) motion is
in-

volved, such as the motion of the planets or the waves of the ocean.

In electronic music, second order exponential motion is technically present
internally in certain cir-

cuits, but only in Inertia do we have second order
exponential motion fully accessible for creative

use. Note in particular that
the “double exponential” curve that results from plugging an
exponen-

tial envelope into an exponential input is a totally different curve
than that produced by a second

order exponential function.

T H E  C O R E  O F  I N E R T I A :  M O M E N T U M

In Inertia, momentum is the propensity for the outputs to continue moving
in the same direction

and rate, or alternately, the resistance to forces
which would change the direction or rate of motion.

With no momentum, first
order exponential motion has no memory; what it will do is totally de-

fined by
the current output and the input. Momentum adds a memory, such that the output
“re-

members” the direction and rate at which it’s going and
“wants” to continue.

With exponential motion, the output slows down, or decelerates, just the
right amount such that as

the output approaches the input, the speed
approaches zero, and consequently the output never

reaches the input. Momentum
lowers this rate of deceleration, such that when the output reaches

y
​

(t) =2
′′ ω (x(t) −2 y

​

(t)) −2 2ωy
​

(t)2
′

y ​(t)2
′′

ω2 2ω
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the input,
it still has a speed. Consequently, the output keeps moving past the input,
but as it passes

the input, it eventually slows to zero and starts
accelerating in the other direction, back toward the

input it just passed.
Again, when the output reaches the input, it still has a speed, continues past

the input, reverses direction, etc.

Symmetric momentum causing a ring or woggle

At control rates, this produces a “woggle,” where the output
settles on a value only after a time. At

audio rates, this produces a ring or
resonance, where the system tends to amplify and lengthen one

particular
frequency. However, because in Inertia you can adjust both the rate and the
momentum

independently, you can have the output overshoot the input in one
direction, but not the other.

Momentum on rise, no momentum on fall

If we continue to add momentum, lowering further the rate of deceleration,
eventually we reach a

value at which the output never settles on the input,
but oscillates indefinitely. In Inertia, this hap-

pens in rise/fall mode when
 both RISE and FALL momenta are all the way up, or in
 skew mode

when MOMENT. is all the way up and SKEW is
centered. This is a ring or a woggle that continues

forever, giving you
self-oscillation centered on the input value, or 0 when there is no input.
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Momentum causing self-oscillation

In two dimensions, the same thing is occurring in the orbits of the planets
around the sun. Gravita-

tional attraction pulls each planet towards the sun,
but the momentum of each planet causes it to

overshoot and continue its
course. If something removed that momentum—for example, if there

was
enough matter in space to cause significant friction—the planets would
settle like the woggle,

or in two dimensions a spiral, towards the sun at the
center and destroy themselves. This relation-

ship between earthly and celestial
periodic motion was a great source of wonder before Isaac New-

ton proposed the
mechanisms that united these two spaces. “The music of the
spheres” expressed

the medieval recognition of this homology. The math
is the same, and if we think about music as

the general science of repetition,
music is more than a metaphor for what the planets do.

With momentum, the equations for the first and second order accelleration
become:

Where  is acceleration/deceleration,  is
rate,  is position,  is input,  is the

rate
scaling factor and  is the momentum, ranging from 0 to 1, where 0 is no
momentum and 1

is self-oscillation.

From these equations, we might note that the rate term disappears entirely
from the second order

equation when momentum is at 1. Then we have a very
similar equation to the equation for first

order exponential motion. Whereas a
rate that is proportional to the distance between input and

output gives
exponential motion, an accelleration that is proportional to the distance
between in-

put and output gives sinusoidal oscillation. This illustrates the
deep connection between exponen-

tial motion and sine waves. Exponential motion
connects time with frequency.

In nature, everything that exists has a momentum. In fact, we might
define momentum in nature

as the ability to interact with other objects, and so if 
anything had no momentum, by that very fact

it could not affect the universe
at all or be detected by any means. When natural objects of differ-

ent momenta
undergo exponential motion, they move just in the way Inertia models.

It should be noted, however, that the scale by which Inertia understands
momentum and the scale

by which physics understands it are different. Real
exponential motion is the result of the balanced

interaction of a certain
amount of momentum and a certain amount of a damping force, like fric‑
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tion.
Inertia models that balance as zero, and self-oscillation as 1, so zero
momentum is not really

the abscence of momentum, just a particular, balanced
quantity of momentum.

Rarely do real objects follow perfectly exponential paths, although
perfect exponentials show up in

some of the math. More often, objects will
follow exponential paths with a little momentum, as in

Inertia’s model.
This allows Inertia to produce extremely natural envelopes, similar to those
one

often finds when physical processes, such as light filaments and vactrols,
are integrated into enve-

lope followers. At the same time, Inertia allows the
modeling of all kinds of physical phenomena,

and is not dependent on the
physical characteristics of some particular process.

E N V E L O P E S  A N D  S T E P  R E S P O N S E

When Inertia is provided with a value that suddenly shifts, it produces a
curved output in response,

which in synthesis is known as a function,
envelope, or contour.

Usually, an envelope will be created in rise/fall mode, in order to get
precise and independent con-

trol over the rise and fall times. (Although
occasionally it may be important to vary the total length

of the envelope
 independently of the ratio between the rise and fall components, in which case

skew mode can be used.) An envelope is generally created by sending a gate
signal to IN, to TRIG, or

to both these inputs. A rising
edge to TRIG will raise the input to 5V until the output exceeds
5V, at

which point the trigger shuts off and the input will be whatever signal
is present on IN, or 0V if no

signal is present. Since a triggered
envelope must rise above the same 5V value that forms its input,

this requires
a little rise momentum. While more complex uses are possible, TRIG
can be used to

create an envelope which decays immediately with no sustain (an
attack–release or AR envelope),

while IN will sustain for as
long as the gate is held (an attack–sustain–release or ASR
envelope).

An AR envelope An ASR envelope

The addition of momentum has two effects on the envelope. On the one hand,
momentum will

cause the curve to rise above or fall below the input signal. On
the other hand, momentum will

cause the signal to move a little faster. Rise
momentum is useful to add a little bite to an envelope’s

rise, producing a
shape similar to a traditional ADSR envelope. Fall momentum can be useful to

give more abruptness to an envelope’s decay. Both rise and fall momentum
together will produce a

“woggle” type of effect. Adding CV to the
rise momentum produces a very natural accent.
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An ASR envelope with rise momentum

Using Inertia as a slew limiter for discrete steps, for example from a
sample and hold circuit, be-

haves exactly the same as using Inertia for
producing an envelope. The jumps in the input value

are smoothed out and a
curve results.

In step responses, Inertia’s momentum controls can be used to produce
effects that are generally

found only on specialty single function modules. In
particular, the woggle effect of combined rise

and fall momentum, when paired
with a random sample and hold input, produces a meandering

contour that is
useful for adding cv with a particularly random sound.

Woggled contour from a sample and hold
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T E C H N I C A L  D E T A I L S  O F  T H E  S T E P  R E S P O N S E

For a step response—where the input moves instantly from one value to
another—these are the

equations for when momentum is negligible:

Where  is the input,  and  are the first and
 second order outputs,  is the rate at

which the output approaches
the input, and  is time. Conventionally, step response equations are

expressed such that  the instant just before the value of the input
was changed.

These equations help to illustrate the difference between first and second
order motion. While first

order is a pure exponential, ,
second order is also scaled by a linear factor, .

With momentum, these equations become:

That is, when momentum is significant, the primary differences between
 first and second order

motion are phase and amplitude. As momentum ranges from
0 to 1, the phase of  ranges from

0 to +45 degrees, while the phase
of  ranges from −90 to 0 degrees. The total phase difference

between the two terms, then, will range from a 90 degree or quadrature
difference with no mo-

mentum, to a 45 degree difference with momentum.

Phase and Momentum in Step Response

In the case of amplitude, we can see that the amplitude factor will range
from  to  in the case

of . In the case of 
 , as the momentum approaches full, the amplitude approaches .
How-

ever, as the denominator and the momentum approach zero, the denominator
approaches zero at

y
​

(t) =1 x(t) − (x(t) − y
​

(0))e1
−ωt

y
​

(t) =2 x(t) − (x(t) − y
​

(0))(1 +2 ωt)e−ωt

x(t) y ​(t)1 y ​(t)2 ω

t

t = 0

e−ωt 1 + ωt

y
​

(t) =1 x(t) − (x(t) − y
​

(0))e
​

cos(
​

ωt +1
−(1−m)ωt ​

2 − m

2
1 − (1 − m)2 arcsin(

​

))
​

2
m

y
​

(t) =2 x(t) − (x(t) − y
​

(0))e
​

2
−(1−m)ωt

​

1 − (1 − m)2

cos(
​

ωt − arcsin(1 − m))1 − (1 − m)2

y ​(t)1

y ​(t)2

1 ​2
y ​(t)1 y ​(t)2 1



17

the same time as the phase approaches −90°, and
 consequently the cosine approaches zero. At

some point, then, we need a
different form of the equation:

 

We can see from this form that the difference in phase and amplitude
between a first and second

order step response is due to the combination of 
the oscillation with the linear term  multiplied

by a sinc
function. As momentum gets closer to zero, the sinc function becomes
increasingly closer

to unity, in which case this equation reduces to the
equation for second order motion without mo-

mentum described above.

Amplitude and Momentum in Step Response

O S C I L L A T I O N

With the momentum all the way up, instead of the output gradually settling
on the input value, the

amplitude will increase to about ±6V in a perpetual
orbit around the input value, or around 0V if

there is no input. At low
frequencies, this creates a periodic modulation source, or LFO. At audio

frequencies, this creates a series of waveforms ranging from a pure sine wave
to a very bright wave-

form, depending on skew.

Oscillations are generally created in skew mode so as to have separate
control over the frequency

and shape of the waveform. Since the momentum must
be 100% on both rise and fall for stable

oscillations, this means that the
momentum SKEW must be zero, or vertical, while MOMENT.
should

be all the way up. The frequency and skew of the oscillation are then
controlled by the rate FREQ.
and SKEW controls,
respectively. While usually it is more useful to have independent control over

the frequency of an oscillation, you may sometimes wish to have independent
control over rise and

fall time, instead. In this case, switch to the
rise/fall mode and set both RISE and FALL momenta to

maximum to start oscillation.

Inertia produces oscillations as skewed sine waves, with potentially
 different rise and fall times.

When the rise and fall times are the same, the
result is a pure sine wave. As the rise and fall times

become increasingly
different, however, the result approaches a straight rising or falling edge,
fol‑
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lowed by a curved falling or rising half sine wave. This is conventionally
known as a sigmoid wave-

form. At audio rates, a sigmoid wave is similar to a
sawtooth wave, but with a bit more emphasis

on the low end. It could be
described as warmer and less nasal than a sawtooth, while retaining the

same
level of brightness.

Output Waveforms

In oscillation, the second order lags behind the first order by 45 degrees.
Due to the lower ampli-

tude of second order, first and second order become equal
values at the peaks and troughs of the

second order waveform.

In skew mode, the frequency of oscillation is relatively pitch stable,
meaning that for a given fre-

quency setting, changing the skew with either cv
or with the rate knob won’t affect the frequency,

and changing the frequency
 won’t affect the skew. At audio rates, because the spectrum of the

waveform is
related to the wave shape, voltage contours can be used to shape the evolution
over

time of the spectrum produced by Inertia, thus giving an important
parameter for sound design.

There are two limits to pitch stability, however.
Because of the physical limitations of the analog

circuit, the pitch can be
tuned for stability in only one direction. The direction for which Inertia is

tuned is right/positive, and so anything from a sine wave to a rising sigmoid
is pitch stable. Usually,

the pitch is still detuned less that a semitone in
the left/negative direction. Second, with CV it is

possible to adjust skew
 beyond its maximum setting, which will detune the waveform. As with

many other
 analog circuits, these imperfections can actually be very useful for sound
design. In

particular, the slight detune of the waveform along with the change
of its waveshape mimics the

way in which a drum head changes both pitch and
timbre after it is struck.

S Y N C  A N D  F R E Q U E N C Y  D I V I S I O N

Unlike a traditional oscillator, Inertia has an input signal, and apart
 from Inertia’s self-generated

motion, a signal to either the IN or
TRIG input will cause Inertia to move. This motion acts as a

force
to synchronize and combine Inertia’s oscillation with an input signal.

To set up a frequency division patch, set up Inertia as an oscillator, and
set up another oscillator (or

a second Inertia) at a higher frequency. Plug
the other oscillator into the IN jack. As you adjust the

frequency
of Inertia, it will latch on to certain ratios of the input signal. To get a
more pronounced

effect, turn the momentum down a little and tune the momentum
SKEW to match the part of the

waveform you want Inertia to latch on
to. For example, a rising saw with a hard falling edge could

be synced with
Inertia by skewing the momentum in the right/positive direction, causing
inertia to
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have more falling than rising momentum. This will reduce the
self-motion and make Inertia more

firmly grab on to the falling edge of the
saw input.

1:2 frequency division of a sawtooth wave

Synchronization occurs in Inertia because of interaction between the input
and the momentum of

the output. When the input is moving in the same direction
as the output, the speed of the wave-

form is boosted. But when the input is
moving in the opposite direction, the output slows down

and loses amplitude.
As an analogy, when pushing someone on a swing, the swing forms a pendu-

lum and
has a natural oscillating frequency with a certain momentum. You can push once
a cycle,

or you can push every other cycle, every third cycle, etc., but if 
you push at some in between rate,

sometimes you'll end up pushing against the
swing and slowing it down. Only when the period of

the pushing is an exact
multiple of the period of the swinging will oscillations build up, or
converse-

ly, only when the period of the swinging is an exact division of the
period of the pushing will it

oscillate.

Inertia will oscillate at frequencies that are a whole integer division of 
the input frequency, , , 

 etc. This is the reverse of the
conventional harmonic series. The frequencies are closer togeth-

er the lower
they are, culminating in an octave leap to the input frequency. In terms of 
convention-

al intervals, the inverted harmonic series gives unity (for example,
C5), then  (C4),


( , F3),
  (C3),
 
( , Ab2),
 
(

, F2),
 
 ( , D2),
  (C2), etc. Depending on which

notes are
emphasized, this can sound like the notes of a suspended fourth with the input
as the

root, a minor chord with the input frequency on the 5th, or
possibly a diminished chord located

one whole step above the input. In
practice, which of these are emphasized depends on the musical

context, the
 relative frequencies of Inertia and its input, and the interaction between the
 wave

shape of the incoming signal and Inertia’s controls.

C O N T I N U O U S  I N P U T S  A N D  F I L T E R I N G

Inertia is a type of slew limiter. While slew limiting is commonly
thought of as a way to slow down or

create smooth transitions between an input
 and an output signal, it has a more exact meaning.

Slew limiting places
constraints on the output signal such that it will only move at a certain
maxi-

mum rate. Any input below this rate is reproduced unchanged except for a
phase shift, as the out-

put takes some small amount of time to catch up to the
input. As described in the section on Expo-

nential Motion above,
Inertia generates exponential motion, which is the same as saying that Iner-

tia
limits the maximum exponential rate of motion that will be produced. So
if an input signal moves

f f/2
f/3

↓ 8va ↓ 8 +va P5
↓ 2 × 8 ↑va P4 ↓ 2 × 8va ↓ 2 × 8 +va M3 ↓ 3 × 8 ↑va m6 ↓ 2 × 8 +va P5 ↓ 3 ×
8 ↑va P4 ↓ 2 × 8 +va m7 ↓ 3 × 8 ↑va M2 ↓ 3 × 8va
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half the distance to its destination in a certain
time , but the rate on Inertia is set such that it can

move half the
 distance to its destination in a time , then the output of 
 Inertia will move

more slowly than the input. On the other hand, if the rate
on Inertia is set such that it can move

half the distance to its destination
in time , then Inertia will just reproduce the input with a

little delay, but with no change to the amplitude or rate of motion.

Momentum, a tendency towards self-motion, emphasizes Inertia’s
maximum rate of motion. With

momentum, input motion near or above the maximum
rate produces an output with more ampli-

tude than the input, such that motion
near this rate “rings” and tends to continue on its own after

it
is given a little push. Momentum will have less effect on motion which is
slower than the maxi-

mum rate, which will only have very slight boosts in
amplitude.

With an LFO input, then, Inertia can be used to slow down the quicker parts
of the waveform to a

certain rate, while letting other parts of the waveform
through unchanged, emphasizing certain fre-

quencies, and with self-oscillation,
creating frequencies. For example, the edge of a saw LFO can

be slowed down,
while the ramp passes through unchanged, or a time-varying LFO can be filtered

such that a certain frequency is emphasized and higher frequencies are
limited. The many possibil-

ities here are beyond the scope of this document.
Carefully shaping and selecting control signals

can become an alternative
 to traditional sequencing, where the music develops on a continuum,

rather than consisting of a series of discrete notes.

At audio rates, a device which allows slower signals through but blocks
 faster signals is a lowpass

filter. In other words, a slew limiter is
just another name for a lowpass filter. Conventionally, howev-

er, “slew
limiters” are operated below audio rate, and are more often linear than
exponential, al-

though both types exist. “Lowpass filters” on the
other hand are operated at audio rate, and are

virtually all exponential.
Momentum, which emphasizes the cutoff frequency, is more commonly

known in
filtering as “resonance.”

The 1 ORDER output is a first order lowpass filter with a
−6dB/oct. slope, while the 2 ORDER out-

put is a second order lowpass
filter with a −12 dB/oct. slope. Momentum adds resonance such that

the cutoff
frequency is emphasized.

Frequency and phase response for various values of momentum

Unlike a traditional filter, Inertia has separate control over the cutoff
frequency and resonance for

rising and falling waveforms. With these
parameters, Inertia becomes a complex filter, filtering a sig-

nal in a
way that depends on both the frequency spectrum and the waveshape of the input
signal.

To envision how this works, consider the response of Inertia to a sawtooth
wave. A sawtooth wave

has two pieces, one of which is extremely fast, and the
other of which moves comparatively slowly.

Inertia will react to each of these
pieces separately, according to the frequency and resonance of

t ​1

t ​ <2 t ​1

t ​ >2 t ​1
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the
corresponding direction. For example, for a rising saw, the slow side will be
filtered by the rise

section, while the fast side will be filtered by the fall
section. In practice, what this means is that al-

most all of the filtering will
be done by the fall section, and the rise section will have very little effect

on the sound. If, however, we use a falling saw instead, almost all of the
filtering will be done by the

fall section. A triangle wave we be filtered
equally by both sections. If we have a waveform which

gradually changes its
skew from rising to falling saw, it gradually shifts from being mostly
filtered by

the falling section of Inertia, to being filtered mostly by the
rising section.

Waveshape-dependent filtering

Each section will filter the spectrum and create resonance, such that as a
 waveshape shifts, the

spectrum and resonance of the filter will shift with it.
For fixed waveshapes, such as the traditional

subtractive synthesis waveforms,
not much will change. Inertia will work as well as another filter,

but its
waveshape dependent filtering will result in a static sound, or a sound that
responds only to

direct cv control. Waveshape dependent filtering depends on
 interesting waveshapes, especially

waveshapes that change over time, such as
wavetable oscillators or the Harmonic Shift Oscillator.

M O D E L

Inertia applies first and second order exponential rate limiting to an
input signal, with a counter-

vailing force of output momentum. Both of these
parameters have separate values for a rising or a

falling output level, giving
the following parameters: input , rate , comprised of rise and
fall rates

 and , and momentum  comprised of rise
and fall momenta  and . This results in the

first and second
order output signals  and .

The  output behaves like a mass–spring system, while the
  output behaves like the more tradi-

tional first order exponential
envelope. This is reflected in the equations relating the outputs to the

inputs:
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These equations give the following transfer functions:

Note that, except for the  term in the denominator, the 
 term in the numerator of 

 exactly cancels the square in the
denominator, leaving a first order equation.

P A R A M E T E R S

Some parameters are directly mapped to their model values. INPUT
provides , 1  ORDER pro-

vides , and 2 ORDER provides .

In rise/fall mode:

The base frequency with no CV and both knobs centered is around 300Hz when
RANGE is set to

H, and 1.5Hz when set to
L.

In skew mode:

Again, the base frequencies are around 300Hz and 1.5Hz when
 RANGE is set to H or L,
respectively.

In rise/fall mode:

​

=
X(s)
Y

​

(s)2 ​

=
1 + 2(1 − m)

​

+
​

ω
s

ω2
s2

1
​

(1 +
​

) − 2m
​

w
s 2

w
s

1

​

=
X(s)
Y

​

(s)1 ​

=
1 + 2(1 − m)

​

+
​

ω
s

ω2
s2

1 +
​

w
s

​

(1 +
​

) − 2m
​

w
s 2

w
s

1 +
​

w
s

m 1 + s/w
Y ​(s)/X(s)1

x(t)
y ​(t)1 y ​(t)2

ω
​

∝r 2V /O+1.6(RISE+RISECV )

ω
​

∝f 2V /O+1.6(FALL+FALLCV )

ω ∝ 2V /O+1.6(FREQ+FREQCV )

ω =r ω + (SKEW + SKEWCV )ω/5V

ω
​

=l ω − (SKEW + SKEWCV )ω/5V

m
​

=r (RISE + RISECV )/5V

m
​

=f (FALL + FALLCV )/5V



23

In skew mode:

m = (MOMENT + MOMENTCV )/5V

m
​

=r
​ ​{m − (SKEW + SKEWCV )/5V

m

if SKEW + SKEWCV > 0

if SKEW + SKEWCV ≤ 0

m
​

=f
​ ​{m + (SKEW + SKEWCV )/5V

m

if SKEW + SKEWCV < 0

if SKEW + SKEWCV ≥ 0


